Factors that Affect Fuel Consumption in Logging Systems

Jonathan Kenney
Tom Gallagher
Mathew Smidt
Tim Mcdonald
Dana Mitchell
National Average Fuel Prices for the Past 8 Years

U.S. No 2 Diesel Ultra Low Sulfur (0-15 ppm) Retail Prices

Dollars per Gallon

Source: U.S. Energy Information Administration
Objectives

- Evaluate how many gallons of fuel it takes to produce one ton of wood.
- Evaluate factors that could possibly influence this rate of fuel consumption such as:
 - Average tree size of the harvested tract
 - Type of harvest- (clearcut vs. thinning)
 - Soil moisture of the harvested tract
 - Average slope of the harvested tract
Methods

- Conduct a literature study, gather fuel data from machine production reports.
 - Evaluate machine fuel use for each report

- Survey loggers to gather more up to date fuel consumption records while noting important harvest characteristics such as:
 - Machine type, makes, and models
 - Harvest Type (Clearcut or Thinning)
 - Slope of the harvested tract
 - Soil Moisture of the harvested tract
 - Average tree size of the harvested tract
Methods - Data Collection

- Fuel consumption will be measured in gallons of fuel used for each ton of wood produced (gal/ton)

- Collect Data from independent logging contractors in two ways:
 - Weekly Fuel Consumption
 - Fuel Consumption by Tract
<table>
<thead>
<tr>
<th>States Visited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alabama</td>
</tr>
<tr>
<td>Florida</td>
</tr>
<tr>
<td>Georgia</td>
</tr>
<tr>
<td>North Carolina</td>
</tr>
<tr>
<td>South Carolina</td>
</tr>
<tr>
<td>Virginia</td>
</tr>
<tr>
<td>Mississippi</td>
</tr>
<tr>
<td>Maine</td>
</tr>
<tr>
<td>Ohio</td>
</tr>
<tr>
<td>Minnesota</td>
</tr>
<tr>
<td>Wisconsin</td>
</tr>
<tr>
<td>Tennessee</td>
</tr>
<tr>
<td>Arkansas</td>
</tr>
<tr>
<td>Louisiana</td>
</tr>
</tbody>
</table>
Upon evaluation of the machine production reports, it was noticed that a ground based operation consisting of a feller-buncher, grapple skidder, and a loader would average 0.66 gal/ton fuel consumption.

<table>
<thead>
<tr>
<th>Row Labels</th>
<th>Average Gal/Hr</th>
<th>Total Sources of Data</th>
<th>Std Dev of Gal/Hr</th>
<th>Average Gal/Cubic Meter</th>
<th>Std. Dev of Gal/Cubic Meter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delimber</td>
<td>4.57</td>
<td>7</td>
<td>1.15</td>
<td>0.13</td>
<td>0.05</td>
</tr>
<tr>
<td>Feller Buncher</td>
<td>6.94</td>
<td>33</td>
<td>2.52</td>
<td>0.29</td>
<td>0.44</td>
</tr>
<tr>
<td>Forwarder</td>
<td>2.93</td>
<td>9</td>
<td>0.44</td>
<td>0.16</td>
<td>0.04</td>
</tr>
<tr>
<td>Grapple Skidder</td>
<td>6.24</td>
<td>43</td>
<td>6.10</td>
<td>0.27</td>
<td>0.35</td>
</tr>
<tr>
<td>Harvester</td>
<td>5.57</td>
<td>20</td>
<td>2.04</td>
<td>0.42</td>
<td>0.20</td>
</tr>
<tr>
<td>Loader</td>
<td>6.95</td>
<td>9</td>
<td>0.71</td>
<td>0.10</td>
<td>0.03</td>
</tr>
<tr>
<td>Processor</td>
<td>5.96</td>
<td>14</td>
<td>1.09</td>
<td>0.18</td>
<td>0.09</td>
</tr>
</tbody>
</table>
Results

Tract Data Total Tons by Crew(s)

<table>
<thead>
<tr>
<th>Crew</th>
<th>Total Tons Harvested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew 1</td>
<td>23,000</td>
</tr>
<tr>
<td>Crew 2</td>
<td>700</td>
</tr>
<tr>
<td>Crew 3</td>
<td>8,000</td>
</tr>
<tr>
<td>Crew 4</td>
<td>6,865</td>
</tr>
<tr>
<td>Crews 5-9</td>
<td>9,800</td>
</tr>
</tbody>
</table>

Tract Data Total Tons: 48,365

Weekly Data Total Tons by Crew

<table>
<thead>
<tr>
<th>Crew</th>
<th>Total Tons</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew A</td>
<td>119,000</td>
</tr>
<tr>
<td>Crew B</td>
<td>91,000</td>
</tr>
<tr>
<td>Crew C</td>
<td>111,000</td>
</tr>
<tr>
<td>Crew D</td>
<td>19,000</td>
</tr>
<tr>
<td>Crew E</td>
<td>94,000</td>
</tr>
<tr>
<td>Crew F</td>
<td>52,000</td>
</tr>
</tbody>
</table>

Weekly Data Total Tons: 486,000

• Tract Data
 • 9 crews
 • Ground-based full tree systems
 • 4 crews from Southeast U.S.
 • 5 crews from the Lake States

• Weekly Data
 • 6 crews
 • Ground-based full tree systems
 • AL and FLA crews
 • High production crews
• Some Lake States crews did not report felling data due to chainsaw felling (Crew 6 and Crew 8).

• Due to a presence of little sample size of tracts, tract data was not considered in the statistical analysis.
Weekly Data average fuel consumption was 0.51 gal/ton.

Lowest fuel consumption came from Crew E with 0.42 gal/ton.

Highest fuel consumption was 0.60 gal/ton from Crew F.
Weekly Production Among Crews

- The most productive crew was Crew E which averaged 1810 tons/week.
- The least productive crew was Crew D which averaged 843 tons/week.
- Crew B submitted the most weeks (81).
- Crew D submitted the least amount of weeks (23).
Felling Analysis ranged from 0.13 gal/ton (Crew C) to 0.24 gal/ton (Crew F).

The overall average fuel consumption for the felling class was 0.17 gal/ton.
The lowest skidding fuel consumption was 0.15 gal/ton by Crew A.

The highest skidding fuel consumption was by Crew F with 0.24 gal/ton.

Average skidding fuel use was 0.18 gal/ton.
The lowest loading fuel consumption was from Crew E with 0.07 gal/ton.

The highest loading fuel consumption was from Crew B with 0.15 gal/ton.

The average loading fuel consumption was 0.11 gal/ton.
Evaluating Factors that could Affect Fuel Consumption

- Soil Moisture, Slope, Average tree size, Harvest Type

- Soil Moisture and Slope evaluated for felling and skidding classes (Loading excluded from evaluation).

- Average tree size in diameter converted to Average Merchantability Class (pulpwood=6” & 7” DBH, chip-n-saw=8”-11” DBH, sawtimber= 12”-up DBH).

- Harvest Type evaluated for each machine and total logging system.
Soil Moisture Effect

Felling Fuel Use by Soil Moisture

Skidding Fuel Use by Soil Moisture
Slope Effect

Fuel Use by Slope (Felling)

![Box plot showing fuel use by slope grade for felling.]

Fuel Use by Slope (Skidding)

![Box plot showing fuel use by slope grade for skidding.]

- **0%**
- **1-15%**
- **16-35%**

Gal/Ton
Average Merchantability Class - Felling

Felling Fuel Use by Merchantability Class

Gal/Ton

- pulpwood
- chip-n-saw
- sawtimber

Crew
Average Merchantability Class - Skidding

Skidding Fuel Use by Merchantability Class

- Pulpwod
- Chip n saw
- Sawtimber

Gal/Ton

Crew
Average Merchantability Class

Loading Fuel Use by Merchantability Class

Crew

pulpwood chip-n-saw sawtimber

Gal/Ton
Harvest Type Effect

<table>
<thead>
<tr>
<th>Crew</th>
<th>% Tons TH</th>
<th>% Tons CC</th>
<th>Total Tons</th>
<th>Total Weeks TH</th>
<th>Total Weeks CC</th>
<th>Total tons TH</th>
<th>Total Tons CC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crew A</td>
<td>78%</td>
<td>22%</td>
<td>118,920</td>
<td>63</td>
<td>16</td>
<td>92,370</td>
<td>26,550</td>
</tr>
<tr>
<td>Crew B</td>
<td>78%</td>
<td>22%</td>
<td>91,465</td>
<td>63</td>
<td>18</td>
<td>71,524</td>
<td>19,941</td>
</tr>
<tr>
<td>Crew C</td>
<td>5%</td>
<td>95%</td>
<td>110,800</td>
<td>6</td>
<td>71</td>
<td>5,784</td>
<td>105,016</td>
</tr>
<tr>
<td>Crew D</td>
<td>18%</td>
<td>82%</td>
<td>19,399</td>
<td>5</td>
<td>18</td>
<td>3,567</td>
<td>15,832</td>
</tr>
<tr>
<td>Crew E</td>
<td>59%</td>
<td>41%</td>
<td>88,693</td>
<td>29</td>
<td>20</td>
<td>52,571</td>
<td>36,122</td>
</tr>
<tr>
<td>Crew F</td>
<td>57%</td>
<td>43%</td>
<td>46,114</td>
<td>21</td>
<td>16</td>
<td>26,314</td>
<td>19,800</td>
</tr>
<tr>
<td>All Crews</td>
<td>53%</td>
<td>47%</td>
<td>475,391</td>
<td></td>
<td></td>
<td>252,130</td>
<td>223,261</td>
</tr>
</tbody>
</table>
Harvest Type Effect - Felling

Gal/Ton

Gal/Ton TH

Gal/Ton CC

Crew A: 0.19
Crew B: 0.19
Crew C: 0.19
Crew D: 0.12
Crew E: 0.13
Crew F: 0.12

All Crews: 0.17

0.27
Harvest Type Effect - Crew Fuel Use Comparison

- Crew A: Thinning 0.50, Clearcut 0.40
- Crew B: Thinning 0.56, Clearcut 0.56
- Crew C: Thinning 0.54, Clearcut 0.54
- Crew D: Thinning 0.46, Clearcut 0.50
- Crew E: Thinning 0.42, Clearcut 0.41
- Crew F: Thinning 0.63, Clearcut 0.56
Comparing Lit Review and Survey Findings

The bar chart compares fuel consumption data for different equipment types:

- **Feller Buncher**
 - Lit Review: 0.29 Gal/m³
 - Survey Data: 0.17 Gal/Ton

- **Grapple Skidder**
 - Lit Review: 0.27 Gal/m³
 - Survey Data: 0.18 Gal/Ton

- **Loader**
 - Lit Review: 0.11 Gal/Ton
 - Survey Data: 0.1 Gal/Ton
Comparing a Similar Study

![Bar chart comparing Gal/Ton for different categories: FB, SK, and LD. The chart includes data from the Survey Study and the Baker et al. (2014) study.](Image)
Conclusions - System and Machine Fuel Use

- Full tree ground based logging operations average 0.51 gal/ton fuel consumption
- Felling machines average 0.17 gal/ton fuel consumption
- Skidding machines average 0.18 gal/ton fuel consumption
- Loading machines average 0.11 gal/ton fuel consumption.
Conclusions

• Evaluation of soil moisture and slope did not result in a statistically significant effect on fuel consumption.

• Crew differences contributed to a great deal of variability in fuel consumption.

• Evaluation of harvest type effect on fuel consumption showed that thinnings use more fuel than clearcuts in the felling class as well as the overall logging system.
Conclusions

- Average merchantability class of harvested trees had a statistically significant effect on fuel consumption in all three harvesting classes.
 - Felling pulpwood uses more fuel than felling chip-n-saw wood
 - Skidding sawtimber uses more fuel than skidding pulpwood
 - Loading sawtimber uses more fuel than loading chip-n-saw wood and pulpwood
Acknowledgements

- Project funded by the National Council on Air and Stream Improvement and the Wood Supply Research Institute
- Many thanks to the loggers who participated.
Questions?